Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In the field of autonomous transportation systems, the integration of Unmanned Aerial Vehicles (UAVs) in emergency response scenarios is important for enhancing the operational efficiency and the victims’ positioning. This article presents a novel Positioning, Navigation, and Timing (PNT) framework, namedHEROES, which leverages the UAV and integrated sensing and communication technologies to address the challenges in post-disaster environments. Our approach focuses on a comprehensive post-disaster scenario involving multiple victims, first responders, UAVs, and an emergency control center. HEROES enables UAVs to function as anchor nodes and facilitate the precise positioning of the victims while simultaneously collecting critical data from the disaster area. We further introduce a reinforcement learning model based on the Optimistic Q-learning with Upper Confidence Bound algorithm, enabling the victims and first responders to autonomously select the most advantageous UAV connections based on their channel gain, shadowing probability, and positional characteristics. Furthermore, HEROES is based on a satisfaction game-theoretic model to enhance the sensing, communication, and positioning functionalities. Our analysis reveals the existence of various satisfaction equilibria, including minimum efficient satisfaction equilibrium, ensuring that the UAVs meet their quality of service constraints at minimal operational costs. Extensive experimental results validate the scalability and performance of HEROES, demonstrating significant improvements over existing state-of-the-art methods in delivering PNT services during humanitarian emergencies.more » « lessFree, publicly-accessible full text available December 31, 2026
-
Free, publicly-accessible full text available June 1, 2026
-
Free, publicly-accessible full text available April 6, 2026
-
Free, publicly-accessible full text available December 1, 2026
-
Free, publicly-accessible full text available April 1, 2026
-
Free, publicly-accessible full text available May 1, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
Abstract Understanding legged locomotion in various environments is valuable for many fields, including robotics, biomechanics, rehabilitation, and motor control. Specifically, investigating legged locomotion in compliant terrains has recently been gaining interest for the robust control of legged robots over natural environments. At the same time, the importance of ground compliance has also been highlighted in poststroke gait rehabilitation. Currently, there are not many ways to investigate walking surfaces of varying stiffness. This article introduces the variable stiffness treadmill (VST) 2, an improvement of the first version of the VST, which was the first treadmill able to vary belt stiffness. In contrast to the VST 1, the device presented in this paper (VST 2) can reduce the stiffness of both belts independently, by generating vertical deflection instead of angular, while increasing the walking surface area from 0.20m2 to 0.74m2. In addition, both treadmill belts are now driven independently, while high-spatial-resolution force sensors under each belt allow for measurement of ground reaction forces and center of pressure. Through validation experiments, the VST 2 displays high accuracy and precision. The VST 2 has a stiffness range of 13kN/m to 1.5MN/m, error of less than 1%, and standard deviations of less than 2.2kN/m, demonstrating its ability to simulate low-stiffness environments reliably. The VST 2 constitutes a drastic improvement of the VST platform, a one-of-its-kind system that can improve our understanding of human and robotic gait while creating new avenues of research on biped locomotion, athletic training, and rehabilitation of gait after injury or disease.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Free, publicly-accessible full text available December 16, 2025
-
Free, publicly-accessible full text available January 1, 2026
An official website of the United States government
